Computing Fragmentation Trees from Metabolite Multiple Mass Spectrometry Data
نویسندگان
چکیده
Since metabolites cannot be predicted from the genome sequence, high-throughput de novo identification of small molecules is highly sought. Mass spectrometry (MS) in combination with a fragmentation technique is commonly used for this task. Unfortunately, automated analysis of such data is in its infancy. Recently, fragmentation trees have been proposed as an analysis tool for such data. Additional fragmentation steps (MS(n)) reveal more information about the molecule. We propose to use MS(n) data for the computation of fragmentation trees, and present the Colorful Subtree Closure problem to formalize this task: There, we search for a colorful subtree inside a vertex-colored graph, such that the weight of the transitive closure of the subtree is maximal. We give several negative results regarding the tractability and approximability of this and related problems. We then present an exact dynamic programming algorithm, which is parameterized by the number of colors in the graph and is swift in practice. Evaluation of our method on a dataset of 45 reference compounds showed that the quality of constructed fragmentation trees is improved by using MS(n) instead of MS² measurements.
منابع مشابه
Fragmentation trees reloaded
BACKGROUND Untargeted metabolomics commonly uses liquid chromatography mass spectrometry to measure abundances of metabolites; subsequent tandem mass spectrometry is used to derive information about individual compounds. One of the bottlenecks in this experimental setup is the interpretation of fragmentation spectra to accurately and efficiently identify compounds. Fragmentation trees have beco...
متن کاملMetabolite identification through multiple kernel learning on fragmentation trees
MOTIVATION Metabolite identification from tandem mass spectrometric data is a key task in metabolomics. Various computational methods have been proposed for the identification of metabolites from tandem mass spectra. Fragmentation tree methods explore the space of possible ways in which the metabolite can fragment, and base the metabolite identification on scoring of these fragmentation trees. ...
متن کاملFragmentation trees for the structural characterisation of metabolites
Metabolite identification plays a crucial role in the interpretation of metabolomics research results. Due to its sensitivity and widespread implementation, a favourite analytical method used in metabolomics is electrospray mass spectrometry. In this paper, we demonstrate our results in attempting to incorporate the potentials of multistage mass spectrometry into the metabolite identification r...
متن کاملComputational Analyses of Spectral Trees from Electrospray Multi-Stage Mass Spectrometry to Aid Metabolite Identification
Mass spectrometry coupled with chromatography has become the major technical platform in metabolomics. Aided by peak detection algorithms, the detected signals are characterized by mass-over-charge ratio (m/z) and retention time. Chemical identities often remain elusive for the majority of the signals. Multi-stage mass spectrometry based on electrospray ionization (ESI) allows collision-induced...
متن کاملMultiple Mass Spectrometry Fragmentation Trees Revisited: Boosting Performance and Quality
Mass spectrometry (MS) in combination with a fragmentation technique is the method of choice for analyzing small molecules in high throughput experiments. The automated interpretation of such data is highly non-trivial. Recently, fragmentation trees have been introduced for de novo analysis of tandem fragmentation spectra (MS), describing the fragmentation process of the molecule. Multiple-stag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of computational biology : a journal of computational molecular cell biology
دوره 18 11 شماره
صفحات -
تاریخ انتشار 2011